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The equilibrium shape and stability of menisci formed at the contact line between 
two vertically aligned cylinders were investigated by developing a general bifurcation 
analysis from the classic equation of Young-Laplace. It waa found that the maximum 
amount of liquid that can be held at  the contact line is determined by the existence 
of a bifurcation of the equilibrium solutions. The onset of instability is characterized 
by a translationally symmetric bifurcation that always precedes the instability to 
asymmetric perturbations. The maximum stable liquid retention is a strong function 
of the ratio of gravitational to surface-tension forces, indicating that gravity acts as 
a destabilizing force. The effect of contact angle on the maximum liquid retention 
is more complex : when the gravitational effects are small, an increase in contact angle 
results in a decrease in liquid retention; on the other hand, when the gravitational 
effects are appreciable, a maximum value of the liquid retention is obtained for 
intermediate values of the contact angle. 

1. Introduction 
There has recently been a renewed interest in the study of the shape and stability 

of fluid-fluid interfaces. The study of the mechanics of static menisci has applications 
in a wide variety of fields such as, for instance, oil recovery operations (Mohanty 
1981), growth of crystals in zero-gravity liquid zones (Carruthers & Grasso 1972) and 
extrusion coating (Higgins & Brown 1984). An extensive review of the literature on 
the subject was recently presented by Michael (1981). 

Much of the effort devoted to the study of solutions to the equation describing 
interface shapes (equations of Y oung-Laplace) has been concerned with the analysis 
of menisci related to microscopic phenomena, for which gravitational forces are 
negligible. For example, Erle, Dyson & Morrow (1971) studied the cam of liquid 
bridges formed between separate cylinders and spheres, and Orr, Scriven & Rivas 
(1975) considered the case of the meniscus formed between a sphere and a flat plate. 
The inclusion of gravitational forces somewhat complicates the mathematical 
analysis. 

A classical problem in which gravity is important is the determination of shapes 
and stability of pendent drops. This problem haa been extensively studied mathe- 
matically by Pitts (1974, 1976), Michael & Williams (1976), Concus & Finn (1979) 
and Majumdar & Michael (1976, 1980). Majumdar & MichMl (1980) showed that 
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two-dimensional pendent drops become unstable to disturbances at a point of 
maximum volume with respect to changes in the internal pressure. These investi- 
gators also analysed the stability of the drop with respect to three-dimensional 
disturbances. 

Boucher, Evans & McGarry (1982) recently studied the effects of gravity on the 
shape of menisci formed between flat plates for prescribed values of the contact angle. 

The advances in the field of bifurcation theory (see, e.g. Thompson 1979) have been 
a source of mathematical tools for the description and analysis of meniscus stability, 
which has nowadays acquired a rigorous character. There are two different ways in 
which the stability analysis can be performed. First, the problem of finding the 
location and shape of the meniscus can be formulated as a minimum-energy problem, 
for which the equation of Young-Laplace is derived as the Euler-Lagrange condition 
of the variational formulation. In  this case, the stability to small perturbations is 
studied following the classical approach of the calculus of variations, as described by 
Michael (1981). An alternative procedure is to introduce a perturbation to the 
equilibrium shape directly in the equation of Young-Laplace and then derive the 
criteria for the existence of a bifurcation ; i.e. a second solution that is close to the 
equilibrium shape (see, e.g. Higgins & Brown 1984). These two approaches are based 
on the fact that the existence of bifurcating configurations implies that the meniscus 
is not physically feasible, since a small external perturbation would lead to the 
evolution of alternative shapes and, eventually, to the break-up of the interface. This 
idea has been.experimentally supported by several investigations (e.g. Erle et al. 
1971, and Kovitz 1975). 

In  this work we examine the equilibrium shape and stability of menisci formed at 
the contact line between two infinite, vertically aligned cylinders. We base the 
stability analysis on the introduction of a smooth, weak perturbation to the 
equilibrium shape in the two-dimensional equation of Young-Laplace. This leads to 
the governing equations for the perturbation function and then to the criteria that 
have to be satisfied for the existence of a bifurcating solution. The analysis is 
performed in a general way, in order to establish criteria for the stability of the 
equilibrium shape to perturbations that keep the volume of the liquid constant and 
perturbations that keep the internal pressure constant. An important result of the 
present study is the maximum amount of liquid that can be retained by a stable 
configuration. This parameter is related in this work to the contact angle and to the 
strength of the gravitational forces relative to surface-tension forces. 

2. Problem formulation 
Let us consider two touching cylinders of infinite length aligned vertically, as 

shown in figure 1. A certain amount of liquid (8-phase) is retained at  the contact line 
between the cylinders, separated from the gas (y-phase) by a phase interface whose 
spatial description is termed the ‘meniscus’. The pressure distribution in the liquid 
phase under static conditions in dimensionless form is given by 

pp = Pp-y, (1) 

where Ps is the dimensionless pressure 
D f  
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Solid 
cylinder 

FIGURE 1. Liquid meniscus suspended between two parallel cylindera 
aligned vertically in the direction of gravity. 

and y is the dimensionless y-coordinate 
y = -  Y' 

R' (3) 

In these equations R is the radius of the cylinder. The parameter Ppo is the 
dimensionless pressure of the liquid at the level y = 0. The primes represent variables 
with dimensions. 

Under the assumptions of negligible surface-tension gradients along the gas-liquid 
interface and low density of the gas with respect to the density of the liquid -4 pa), 
a force balance at the interface yields the well-known equation of Young-Laplace, 

(4) 

where the pressure of the gas phase has been taken equal to zero as a datum level 
and the Eotvos number is defined by 

(EO) Pp+ 2H = 0, 

where (r is the surface tension of the p-phase. In (4), H is the dimensionless mean 
curvature which is related to the meniscus shape by (see Aria 1962) 

where z =f(z, y) is the location of the gas-liquid interface and the subindices 
represent partial differentiation. 

At the wetting lines (y = yl(s), y = ys(z)) the angle at which the meniscus intersects 
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the solid surface, 4, is a property related to the interfacial tensions between the phases 
and it is geometrically determined by the shapes of the meniscus and the solid surface, 

cos4 = ns'nf a t  y = y,(x),y,(x), (7) 

where ns and nf are unit vectors normal to the solid surface and the meniscus 
respectively. If z = S(z, y) represents the equation for the surface of the cylinders in 
dimensionless form, we have 

[I - (1  +y)21: ( - 2  < y < O ) ,  
[1-(1-y)2]4 (0 < y < 2). 

S = {  

Note that S is only a function of y owing to the translational symmetry of the 
cylinders. 

The unit vectors ns and nf can be related to f and S by means of the following 
equations : 

1 
ns = (1 + q t  [ - 8, e, + e,l, 

n -  2 +  2 ~[-fzex-f,e,+e,l. 
f- U + f Z  f,) 

1 

(9) 

The combination of (l) ,  (4) and (6) leads to a partial differential equation for the 
meniscus shape f,  

where A = Pgo(EO) (12) 

can be considered as a dimensionless datum or reference pressure. On the other hand, 
the combination of (7),  (9) and (10) leads to the boundary conditions that f haa to 
satisfy at the wetting lines, 

Furthermore, the meniscus and the solid surface intersect at  the wetting lines, i.e. 

f = s at Y = Yl(X)9Y2(X). (14) 

We shall restrict the present analysis to the family of shapes having reflective 
planes of symmetry along the x-axis, i.e. menisci whose shape is periodic in the 
x-direction with dimensionless wavelength equal to 21. This constraint imposes the 
following boundary conditions on f: 

f x = O  at x = f l .  (15) 

These conditions are physically equivalent to the case in which the meniscus 
intersects two surfaces parallel to the ( z ,  y)-plane, located at  x = f 1, at right angles. 

Equations ( l l ) ,  (13), (14) and (15) can be solved to find the meniscus shape f for 
given values of the Eotvos number, the dimensionless reference pressure A and the 
contact angle. We will first focus our attention on the determination of translationally 
symmetric equilibrium shapes and afterwards we shall develop a general analysis 
based on perturbation methods to determine the stability of these configurations. 
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2.1. Equilibrium shapes 

Let us consider that there exist equilibrium shapes that satisfy the set of equations 
presented above and that posess translational symmetry along the x-axis. In  this case, 
the interface shapefwill be a function of y only, described by the following equations: 

f 

and f = S  at y=y,,y,. (18) 

In this particular case the derivatives with respect to y are total derivatives and the 
y-coordinates of the wetting lines (yl and y2) are independent of x. 

Equation (17) can be expressed in a more manageable way by defining 

8, = tan-' fv, (19) 

8, = tan-lS,, (20) 

# = P,-8,l at Y = Yl>YZ, (21) 

where 8, and 0, are angles in the interval (-in, +in). By using these definitions, 
(17) leads to 

in which we have taken into account the common convention that the contact angle 
# is measured through the liquid phase, B. 

In  the absence of gravitational effects (EO = 0), the above equations can be solved 
analytically to obtain 

(22) 
1 f = s, +% [( 1 -A2yZ)i- (1 -Py$], 

where S, is the value of S at y = yl. Notice that if A = 0 the above equation reduces to 

f = 81, (23) 

which corresponds to the simple case of a flat interface. 

so that 
In  any case where Eo = 0 the shape of the meniscus is symmetric about y = 0, 

Yz = -91. (24) 

For given values of $ and A ,  the wetting-line coordinates are not known a priori but 
they can be determined by introducing the derivative of the interface shape given ~- 

by (22) into the equation 
tan# = fv1-  S,l 

1 + S V l f Y l  

obtained from (21) at y = y1 and the definitions (19) and (20). Equation (25) is a 
nonlinear algebraic equation that in the present work is solved by Newton's method. 
In the particular case in which # = 0, this equation takes the simple form 

1 

When the Eotvos number is different from zero, (16), (18) and (21) do not have 
an analytical solution. In  this case, the differential equation (16) was solved by a 
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shooting method coupled with a Newton-type iterative procedure to locate the values 
of the boundary points y1 and y2. The equation was discretized by a fourth-order 
Runge-Kutta scheme. 

2.2. Stability 
2.2.1. Fundamental analysis 

The translationally symmetric equilibrium shapes found by means of the procedure 
described above will not be stable if they can evolve to new equilibrium configurations 
when they are subjected to a smooth and weak perturbation. As we explained in Q 1,  
the existence of alternative shapes that are sufficiently close to the equilibrium 
menisci indicates that the calculated equilibrium shapes are not stable. 

We start the stability analysis by proposing the existence of an alternative 
equilibrium configuration f(z, y ) that differs slightly from the translationally sym- 
metric equilibrium shape f(O)(y), 

(27 ) 

The parameter E 4 1 restricts the new shapef to be the result of a weak perturbation 
to the basic shapef(O). In (27), f(l) is the perturbation to the equilibrium shape. In 
general, the perturbed solution may correspond to a perturbed value of the reference 
pressure, 

(28) 

We now substitute (27) and (28) into (11) and then collect terms of O(sn) for n = 0 
and 1. The terms of O(eo) lead to the equation 

f(z, y) = f'O'(Y) + Ef(%, y) + W2). 

h = h(O) + EA(1) + O ( E 2 ) .  

CIO) 

which is the governing equation forf(O), equivalent to (16). 
The terms of O(s) lead to 

This is a linear, non-homogeneous partial differential equation for f(l), with variable 
coefficients. 

At this point we need to find the boundary conditions that would allow the 
solutions of (29) and (30). In  general, the equilibrium and perturbed shapes will not 
have the same wetting lines. Let us define Ayr as the difference between the locatiop 
of the wetting lines of each of the shapes, 

Ayt = yg(z)-yl0' (i = 1,2). (31) 

Notice that yio) will not be a function of 5 owing to the translational symmetry of 
(29). 

Since the perturbed shape differs at any point from the equilibrium shape by a term 
of order E we assume that Ayt must also be of order E. In  view of this, we can expand 
any function g about yi0) by means of the following Taylor series: 

(32) 

Let us also suppose that the perturbed shapef(z, y) is defined in the region limited 
by the contact lines yr and ylo). Notice that, if lyrl > Iyio)l, this will be the c m ,  
providing that the functionfexists. On the other hand, if lyIl < Iylo)l, we are supposing 
that there exists a prolongation off in the region Iytl < Iyl < Iylo)l. With this in mind, 

g(cYt) = B(z,YIO))+gy(z, Y P )  A Y i + 0 ( E 2 ) .  



Menisci between two touching cylinders 363 

the expansion (32) can be used to represent f in the region between the two wetting 
lines. Expandingf and S and substituting into the boundary condition (14) we get, 
neglecting terms of O(ee), 

f(x, Y P )  +f& YI") AY, = S(Yj0') +S,(YP') AYC. (33) 

O ( @ ) :  f'o'(yp) = S(ylO'), (34) 

Substituting (27) into (33) and collecting terms of the same order leads to 

Equation (34) is the same as boundary condition (18) for the symmetric shape and 
(35) allows one to express Ayc in terms of E. 

In  developing (34) and (35) we have considered the general case where SJy6O)) 4 
fF)(yio)). For the case of zero contact angle these two quantities are equal, according 
to (19), (20) and (21), and (33) leads to a simple boundary condition forf('), 

f"'(x, @') = 0 (i = 1,2) ; qi = 0, (36) 

which means that the perturbation leaves unchanged the location of the wetting lines. 
For the case q5 + 0, (35) can be substituted into (32) to obtain a general expansion 

The functionsf and S can be expanded by means of this equation and the result can 
then be substituted into boundary condition (13). After some manipulations and 
collecting terms of the same order, the following results are obtained, 

at y = yio), yp', 
[ 1 + f k"' S,] 

(l+s;)ql+(fp)2$ 
O(E0): cosqi = 

where 
tan qi( 1 +f!) S,) 

at y = yio), 
1 + (f k"',2 

5111 = 

Equation (38) is equivalent to (17) and it represents the wetting-line boundary 
condition for the symmetric shape f ( O ) .  Equation (39) is a mixed-type boundary 
condition forf(') and the parameters Q,# can be determined from a knowledge off(O). 

The boundary conditions at x = & 1 (equation (15)), after substituting (27) lead to 

fg)(x,y) = O  at x=fZ,  (43) 
since f(0) is translationally symmetric. 

the differential equation, (30), 
Summarizing, the perturbation to the equilibrium shape, f(l)(x, y), has to satisfy 

fgL[l+ (f;')*]+f;;-3[(Eo) y-A(O)]f~'[l+ (fk"')"I"fk" = -A(')[l+ (fk"')"31 
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and the following boundary conditions, (39), (43), 
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Qltfk"(2, y p )  +QZlf(1)(Z, y p )  = 0 (i = 1,2), 

f g ) ( ~ , y )  = O  a t  z = f l .  

Thus, the perturbation function has to satisfy a second-order, linear, non- 
homogeneous partial differential equation subject to homogeneous boundary con- 
ditions. The solution can be expressed as a sum of a particular solution to the 
non-homogeneous problem plus a homogeneous solution, as follows : 

(44) 
The solution to the homogeneous part of the problem becomes simpler if the 
particular solution is forced to satisfy one of the conditions expressed by (39), say, 
the condition corresponding to i = 2(y = yf"). Notice that P has been chosen to be 
a function of y only since the non-homogeneous term in (30) is only a function of y. 
According to this, we select a function P that satisfies the equations 

(45) 

(46) 

f'l'(Z, y) = P(y) + h(x, y). 

P,,-3[(EO)y-A(')]f!'[l+ (f!')']4Py = -A(')[l+ (f:')']]', 

a,, P,(yP') + a,, P(y?') = 0. 
Such a function is 

P(Y) = n(')~y(y!"')+f(y$')-f(y)], (47 1 

and f(Y) = J" ,(O) r(51d5. (49) 

where Y ( Y )  = + (f:',"]" (48) 

In obtaining (47), use has been made of the differential equation for fo), (29). 
According to (30), (39), (43) and (44) this choice of P results in the following set of 
equations for the homogeneous solution h : 

(50) 

(51) 

(52) 

(53) 

This set of equations can be solved by means of separation of variables, which yields 

hz,[l+ (fk"')"+hhy,-3[(EO)y-A(o)]f~'[1 +(f;')"h, = 0, 

with boundary conditions 

a,, h,(y?') +a,, h(y?') = A(1)[Qll y(yl0') -12 a a " ' Y ( ~ ~ ' ) - s z , , ~ ( ~ ~ ' ) l ,  a,, 
a,, h,(yP') +a,, h(yiO') = 0, 

h,( + 2 ,  y) = 0. 

a solution of the form m 

nn 
1 

En=- ( n = 0 , 1 , 2 , 3  ,... ), which yields 

nnx 
1 

U n ( Z )  = cos- 
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The knowledge of the eigenvalues 5, leads to the following differential equation for 

with boundary condition 

The coefficients a, in the series (54) are found by substituting (54) into boundary 
condition (51) and applying the orthogonality property of the family of functions 
u,(x). This leads to 

Q12(vn)u (YF)O'++~~~~(YP))  = 0. (60) 

and a,[~,,(~,)y(YIo))+a21~n(~~))I = o (n = 132, **.). (62) 

The main objective of the present analysis is to find under which conditions the 
functionf(l) is non-trivial. From a physical point of view, there are two different 
scenarios to consider. The first is the stability of the equilibrium shape to perturba- 
tions that keep the reference pressure constant. This would occur if, for example, 
there were a liquid-injection point at the contact line between the cylinders. The 
second corresponds to the stability of the equilibrium shape to perturbations that 
keep the volume of the meniscus constant, i.e. with no injection of liquid. From a 
mathematical point of view, constant-pressure perturbations mean A(1) = 0. The 
mathematical study of constant-volume perturbations requires further algebraic 
developments. First, let us define the dimensionless meniscus volume, 

For the case of the translationally symmetric shapef(O), (63) reduces to 

The constant-volume constraint can be expressed as 

Vp- V$J' = 0. 

We can subtract (64) from (63) and make use of (27). To evaluate the resulting 
expression, it is necessary to perform integrations in the interval [yjo), yr] with respect 
to y. Within this interval, the integrand can be approximated by means of the series 
expansion (37) which, for a general integrand g(z, y), leads to 

Using this equation and collecting terms of order-s in (65) yields 

I:f:f(l)dyds-y$o) 1:: f ( ' ) ( s , y ~ ) ) d ~ + y ~ ~ )  SI: f(l)(z,yf'))ds = 0. (67) 

This equation is the relation thatfcl) has to satisfy in order to  have a perturbed shape 
with the same volume as the equilibrium shape. This volume constraint can be further 
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simplified by substituting (44), (47) and (54) into (67). After some manipulations this 
leads to 

where v,(y) can be obtained by integrating (59), 

In the following subsections we will analyse each of the two stability scenarios 
separately. 

2.2.2. Stability to constant-pressure perturbations 

If the perturbations keep the reference pressure of the meniscus constant, then 
A(,) = 0 and the particular solution is, according to (47), P(y) = 0. Furthermore, the 
condition for a,, (61), becomes homogeneous and we notice that a non-trivial solution 
for f(l) exists if, and only if, one of the factors multiplying a ,  in (61) or (62) is 
identically equal to zero. This leads to the following condition for the instability of 
the basic shape f ( O )  : 

Condition I. An equilibrium shape,f(O)(y), is unstable to constant-pressure pertur- 
bations if there exists a number u > 0 such that there is a solution w to the problem 

(70) vYY -3[(Eii)~-A(')]fp)[l + ( f g ' ) 2 ] I t ~ ,  = ~ [ l + ( f p ) ) ~ ] ~ ,  

n,,'U11(Y~0))+5122w(y!j0)) = 0, (71) 

Q,, v,(yy) + Q,, w(yp) = 0. 

f(l)(z, y) = av(y) cos (dz) 

that also satisfies 
(72) 

(73) 

The basic shape will then be unstable to a perturbation of the form 

for any arbitrary value of a. Note that u is related to the wavelength of the 
perturbation Z by u = n2n2/Z2, according to (59) and (70). 

Condition I leads to two physically different cases. First, if v = 0, the basic shape 
would be unstable to a translationally symmetric perturbation corresponding to the 

Since a, is arbitrary, the volume of the meniscus is not kept constant by this 
perturbation ((68) is not satisfied). 

If v > 0, the non-symmetric part of the perturbation is characterized by wave- 
lengths given by 

(75) 
nn 

I = - ( n  = 1,2, ...). 
Vi 

Notice that v > 0 implies that, in general, a, = 0 (see (61) for A(') = 0) and, therefore, 
this type of perturbation also keeps the volume of the meniscus constant since (68) 
is satisfied when A(l)  and a, are simultaneously equal to zero. 

Condition I can be formulated as a Sturm-Liouiville eigenvalue problem. The 
differential operator in (70) can be transformed into its self-adjoint form by 
multiplying the equation by q 3 ,  where 

p = 1 + (fpy, (76) 
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and making use of (29). The result is 

[q-b], - vq-tw = 0. (77) 

Thus, condition I can also be expressed as follows: the equilibrium shape f(O)(y) is 
unstable to constant-pressure perturbations if there exists a zero or negative 
eigenvalue (,urn < 0) for the following Sturm-Liouiville problem : 

This problem can be analysed by means of classical Sturm-Liouiville theory (see, 
e.g. Courant & Hilbert 1953). It can be shown that the eigenvalues can be expressed as 

k, q (Yio ) )* [vm(y~ ' ) l~+k , [q (y i~ ) )~~  [ ~ ~ ( Y P ) I ~ + + S Y I . '  ,(O) q'(Vm)idy 
Pm = 7 (80) 

where ko = -Q21/Q11, (81 1 
kl = Q22/Q12. (82) 

q-'(vm)2 dy] 

The eigenvalues defined by (80) are the minimum. of the expression on the right-hand 
side over the space of continuous and differentiable functions in the interval [yio), yp)], 
i.e. 

k, q(yio))-i [ Y ( Y ~ ~ ) ) ] ~  + ko[q(yf'))]3 [ Y(yy))l2 + 1; q-iYz dy 
P m  9 (83) J-1; Q-!y2dY 

where Y is any continuous and differentiable function defined in [yio), yio)]. According 
to this analysis, it is only necessary to find a function Y for which the expression 
on the right-hand side of (83) is negative to guarantee the existence of negative 
eigenvalues and, therefore, that the equilibrium shape is unstable. On the other hand, 
if k, and k, are greater than or equal to zero, it  is obvious that there can be no negative 
eigenvalues and the basic shape is, therefore, stable. These two rules of simple 
inspection were enough to establish the stability of the shapes for some of the cases 
considered in this work. In  order to obtain a more rigorous procedure applicable to 
all the possible cases, the calculations were performed by using the Rayleigh-Ritz 
technique in which the eigenvalues p m  are found by expressing w, in (80) in 
finite-difference form and using the power method to find the eigenvalues of the 
resulting algebraic system. The procedure is described in detail by Burden, Faires 
& Reynolds (1978). 

2.2.3. Stability to constant-volume perturbations with changes in the reference pressure 
Let us consider now the case in which h(l) =+ 0 and the perturbed shape satisfies 

the constant-volume constraint, (68). If we exclude from the analysis the solutions 
corresponding to constant-pressure perturbations, treated in the previous section, 
(61) and (62) lead to 

a, = 0 (n = 1,2,  ...). (85) 
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Substituting (84) into (68), the volume constraint becomes 
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[a, wo - a2 f ] dy - yp)[al vo(yp)) - a2 r(y$")] = 0, 

where a1 = ~ 1 1 ~ 2 2 ~ ~ ~ 1 ° ~ ~ - ~ 1 2 ~ 2 1 ~ ~ ~ ~ ' ~ - ~ 2 1  5222 m09, (87) 

(88) a 2  = 5222[5211(~0), ,  (YY') + a 2 1  %(Y!o))l> 
and vo(y) is given by (69). 

It is interesting to point out that the new form of the volume constraint (86) is 
independent of the perturbation to the reference pressure This analysis leads to 
a second condition for the instability of the equilibrium shape f ( O ) .  

Condition 11. An equilibrium shape, f (O)(y), is unstable to constant-volume pertur- 
bations if i t  satisfies (86). The basic solution will be unstable to a perturbation of 
the form 

(89) 
a 
a2 

f"'(y) = A(') [;22 11 Y ( Y P )  + mJ') - Q) ++(Y)]. 

Equation (89) was obtained by combining (44), (47), (84) and (85). The resulting 
perturbation is translationally symmetric and directly proportional to the perturba- 
tion to the reference pressure. 

Condition I1 can be evaluated oncef(O)(y) has been determined by simply checking 
if it satisfies (86). This was done in the present work by evaluating the functions vo(y) 
and T(y) numerically and then performing the numerical integration required in (86). 

The procedures presented above were used to evaluate equilibrium shapes and their 
stability over a wide range of the independent parameters EO, and q5. The results 
are presented in the following section. 

3. Results and discussion 
According to the analysis presented in the previous section, there are three 

parameters that determine the shape of a meniscus formed a t  the contact line between 
two infinite cylinders: the Eotvos number EO, the dimensionless reference pressure 
A, and the contact angle q5. In this work we have calculated the equilibrium shapes 
corresponding to given sets of values of these parameters and then have checked the 
stability of those shapes by verifying whether they satisfied the conditions of 
instability. The results of these calculations are discussed below. First, we present 
the results corresponding to fixed values of the contact angle and then we perform 
a global comparison. 

3.1. The case of zero contact angle (q5 = 0 )  

We have restricted the results to cases in which the meniscus touches the cylinders 
at two contact lines. This imposes a constraint on the maximum amount of liquid 
retained since i t  implies that the minimum value of y is -2 (see figure 1). In  other 
words, we are not allowing for the presence of drops that hang from the cylinders. 
For $ = 0 and in the absence of gravitational effects EO = 0, the meniscus of maximum 
volume intersects the cylinders at y1 = -2 and it corresponds to a maximum value 
of the reference pressure of h = 0.5, as shown in figure 2. As the reference pressure 
decreases, the volume of the liquid phase also decreases. The menisci shown in figure 2 
are symmetric about y = 0 owing to the absence of gravitational effects. All the 
menisci corresponding to this case are stable since they do not satisfy the conditions 
of instability developed in the previous section. 
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FIGURE 2. Shapes of the menisci for the caae EO = 0 and q5 = 0. 

As the Eotvos number is increased from zero, the meniscus of maximum volume 
intersects the lower cylinder at y1 = - 2 and the upper cylinder at a value ya < 2 that 
gradually decreases owing to the increases in the relative strength of the gravitational 
forces (the liquid tends to accumulate at the lower regions of the cylinder assembly). 
This behaviour is observed for values of Eo less than 0.5. When the Eotvos number 
reaches approximately 0.5, it is not possible to find a solution that intersects the lower 
cylinder at y, = -2. This is due to the geometrical impossibility of the solution to 
meet the lower cylinder at the location specified with a contact angle of zero. The 
value of y1 corresponding to the meniscus of maximum volume is then limited by the 
Eotvos number and it becomes larger a-a Eo increases. The menisci of maximum 
volume aa a function of the Eotvos number are shown in figure 3. The solutions of 
maximum volume with y, > - 2 satisfy simultaneously the first condition of instability 
with v = 0 and the second condition. This means that the menisci shown in figure 3 
with Eo > 0.5 are unstable to translationally symmetric perturbations. However, 
a small decrease in the value of h that generates those shapes leads to a very similar 
shape that is stable. This means that the maximum-volume shapes presented in figure 3 
for Eo > 0.5 are marginally unstable. 

The shapes corresponding to Eo > 0 (see figure 3) are not symmetric about y = 0. 
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FIGURE 3. Menisci of maximum volume for the case q5 = 0 for various 
values of the Eotvos number. 

As we mentioned before, the lower wetting line is displaced downwards owing to the 
effect of the gravitational pull. 

The dimensionless volume of liquid per unit length is shown in figure 4 for q5 = 0 
as a function of h and the Eotvos number. For a given EO, as the value of the reference 
pressure increases, the volume of the meniscus increases, reaching the limiting 
situation illustrated in figure 3 beyond which no solutions to the equilibrium equation 
can be obtained. It is interesting to point out that the dependence of Vp/2Z on h is 
not affected by the Eotvos number, except in the range of h close to the maximum 
volume limit. 

3.2. The caee of contact angle q5 = &n 
A small increase in the contact angle to a value of &n ( 1 5 O )  leads to appreciable 
changes in the behaviour of the liquid retention. It was found that, for a given value 
of the Eotvos number, there was a marginally stable shape corresponding to the 
meniscus of maximum volume that can exist physically. The shapes of these 
maximum-volume menisci are shown in figure 5 for various values of EO. But, in 
contrast with the case of zero contact angle, there exist equilibrium shapes with larger 
volumes that satisfy the instability conditions. Figure 6 shows the reference pressure 
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as a function of the parameters Vp/21 and EO, illustrating the existence of unstable 
shapes. At approximately the maximum value of A (see figure 6), the meniscus 
satisfies simultaneously condition I1 and condition I with v = 0, indicating that it 
is unstable to translationally symmetric perturbations. Solutions of larger volumes 
than that corresponding to the onset of unstable behaviour are obtained, and they 
satisfy condition I with v < 0, indicating that these solutions are unstable to 
asymmetric perturbations. For large Eotvos number (for instance, EO = 1 in figure 6) 
there are unstable solutions with the same volume as stable ones but with different 
values of the reference pressure. 

An example of the bifurcation of solutions for a given value of h is presented in 
figure 7 .  The case considered ( A  = 0.13, EO = 0.5) yields two different solutions to the 
equilibrium equation of which the shape with the largest volume is unstable to 
asymmetric perturbations. 

3.3. The ca8e of contact angle 9 = in 
The existence of a marginally stable shape corresponding to the maximum liquid 
retention is still observed as the contact angle is further increased. For 9 = in (30') 
the maximum-volume shapes are presented in figure 8 as a function of the Eotvos 
number. Figure 9 shows the relation between the reference pressure and the liquid 
retention, showing a similar qualitative behaviour as the case 9 = &. 

The results obtained in this investigation show that there are two factors that limit 
the amount of liquid that can be retained at the contact point between two infinite 
and vertically aligned cylinders. First, there is a geometrical limitation imposed by 
the shape of the solid surface and the constraint yl > - 2 .  This limits the solutions 
of the equilibrium equations (represented by bars in figures 4, 6 and 9) and it 
represents the maximum-volume meniscus attainable for the case with # = 0. For 
contact angles greater than zero, the maximum amount of liquid is determined by 
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FIGURE 7. Two different bifuration solutions for the case A = 0.13, EO = 0.5. 

the onset of shape instability, according to the theoretical criteria developed in the 
present work. The stable menisci of maximum volume approximately correspond to 
a maximum in the value of the reference pressure, as observed in figures 4,6 and 9. 
This result is consistent with the analysis presented by Pitts (1976), for the pendant 
drop geometry. The maximum reference pressure is presented in figure 10 as a 
function of the Eotvos number for various values of the contact angle. 

The maximum volume that can exist physically is presented in figure 11 as a 
function of the contact angle for fixed values of the Eotvos number. When the 
surface-tension forces are much larger than the gravitational forces (EO+O), the 
maximum volume decreases as the contact angle increases. For appreciable gravi- 
tational effects (for instance, EO = 1.5, see figure 1 l ) ,  the volume exhibits a maximum 
with respect to the contact angle and it shows a decreasing trend for relatively large 
values of this parameter. This behaviour is caused by two opposite effects. First, low 
contact angles mean, in general, stable shapes extended over large areas of the solid 
surface (better wetting characteristics), this can be seen by comparing figures 3, 5 
and 8. Secondly, low contact angles also imply that the meniscus has a shape that 
is closer point by point to the surface of the cylinders, compared to that obtained 
for large contact angles. The relative importance of these effects can be clearly 
appreciated in figure 12, where the interface shapes corresponding to the menisci of 
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maximum volume are presented for EO = 1 as a function of the contact angle. As the 
contact angle is increased from 0 to i x ,  there is a slight decrease in the wetted area 
but an increase in the volume owing to the greater separation of the interface from 
the solid induced by the larger contact angle. Further increases in the contact angle 
lead to lower wetted areas until the effect of this trend on the volume overwhelms 
that caused by the separation of the interface. 

The maximum volumes of stable menisci are presented in figure 13 as a function 
of the Eotvos number for several values of the contact angle. This figure shows that 
an increase in the relative strength of the gravitational forces with respect to 
surface-tension forces (larger EO) produces a destabilizing effect on the liquid phase 
that results in a d e c r e e  in the maximum liquid retention. 

The analysis developed in the present investigation gives an idea of the trends 
followed by the liquid retention as a function of Eotvos number in complex structures 
made up of cylinders or particles in which all the retention occurs at the contact 
points. The trend observed in figure 13 is consistent with experimental observations 
of liquid retention in porous media (see S b z  1984). 

4. Conclusions 
The amount of liquid retained at the contact line between two infinite and 

vertically aligned cylinders is appreciably affected by three independent parameters : 
a datum (reference) level of the pressure in the liquid phase, the contact angle and 
the relative strength of gravitational and surface-tension forces. The analysis 
developed in this work has shown that, for specified values of the Eotvos number 
and the contact angle, there is a unique configuration that determines the maximum 
amount of liquid that can be held at the contact line between the cylinders. This 
maximum liquid retention is determined by stability considerations, except for low 
vhlues of the Eotvos number (EO < 0.5) and zero contact angle where geometrical 
effects are dominant. 

The gravitational force has a destabilizing effect on the menisci which produces 
a lower maximum volume of liquid as the Eotvos number increases. On the other 
hand, the effect of the contact angle is two-fold : an increase in this parameter leads 
to lower values of the wetted areas but larger separation between the menisci and 
the solid surface. These two effects result in the existence of increasing and decreasing 
trends of the maximum retention as the contact angle increases. 

The onset of unstable behaviour is controlled by the bifurcation of the equilibrium 
shapes to translationally symmetric shapes, a product of symmetric perturbations. 
In  all the results obtained in this work, symmetric instabilities are always preceded 
by asymmetric bifurcations. 

This work was supported in part by a grant from Chevron Research Co. One of 
the authors (A. E. S b z )  was supported by a fellowship from FONINVES of Venezuela. 
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